Skip to main content
Edward Flagg
Department of Physics and Astronomy

Publications

Here is a list of publications by members of the research group. (Reverse chronological order)

Plots showing stability of Fabry-Perot interferometer.
1. Narrow-bandwidth tunable optical filter stabilized by Newton’s rings fringe analysis.
KC RB, Flagg EB
Applied Optics, 63(12):3117–3122 (2024).
doi: 10.1364/AO.513725

Normalized electric field distribution for horizontal and vertical dipole moments in an inversely designed polarization demultiplexer.
2. Inverse design of a polarization demultiplexer for on-chip path-entangled photon-pair sources based on single quantum dots
Melo EG, Eshbaugh W, Flagg EB, Davanco M
Optics Letters 48(17):4516-4519 (2023)
doi: 10.1364/OL.496129


Schematic of a bar with a pattern of holes in it and glowing regions to indicate the confined optical mode. Inset is a plot of Purcell factor and efficiency.
3. Multiobjective Inverse Design of Solid-State Quantum Emitter Single-Photon Sources.
Melo EG, Eshbaugh W, Flagg EB, Davanco M
ACS Photonics 10(4):959-967 (2022)
doi: 10.1021/acsphotonics.2c00929


A plot showing the variation in time of the length of a shearing interferometer.
4. A tunable Fabry-Perot cavity stabilized via a mechanically connected shearing interferometer.
KC RB, Lander GR, Nichols C, Lee J, Flagg EB (2022) 
Photonic and Phononic Properties of Engineered Nanostructures XII, 12010:49–54. 
doi: 10.1117/12.2609815





Image of the construction of the polarimeter. On a half-inch post is a rectangular platform. Atop the platform is a photodiode, a polarizer in a rotation mount, a hollow-axle motor holding a quarter wave plate.
5. Complete Stokes vector analysis with a compact, portable rotating waveplate polarimeter. 
Wilkinson TA, Maurer CE, Flood CJ, Lander G, Chafin S, Flagg EB 
Review of Scientific Instruments, 92(9):093101 (2021).
doi: 10.1063/5.0052835






A plot showing a linear dependence of the linewidth of the quantum dot resonances as a function of the AC Stark laser intensity.
6. Dynamic nuclear polarization in a charged quantum dot induced by the AC Stark effect
Wilkinson TA, Cottrill DJ, Cramlet JM, Maurer CE, Flood CJ, Bracker AS, Yakes M, Gammon D, Flagg EB.
SPIE Nanoscience + Engineering Proceedings
Quantum Nanophotonic Materials, Devices, and Systems 2019, 11091:110910I (2019).
doi: 10.1117/12.2529455



Schematic showing the arrangement of optical components to modulate above-band excitation.
7. Auger recombination-induced neutralization and stretched exponential recharging in an InAs quantum dot
Lander, G. R., Isaac, S. D., Chen, D., Demircan, S., Solomon, G. S., Flagg, E. B.
Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XVI, 10929:109290F (2019)
doi: 10.1117/12.2506555







Time resolved fluorescence
8. Charging dynamics of single InAs quantum dots under both resonant and above-band excitation
Lander, G. R., Isaac, S. D., Chen, D., Demircan, S., Solomon, G. S., Flagg, E. B.
arXiv:1812.07672 [cond-mat.mes-hall]




Three excitation spectra, one without an AC Stark laser, one with a linearly polarized AC Stark laser, and one with a circularly polarized AC Stark laser.
9. Spin-selective AC Stark shifts in a charged quantum dot
Selected as an Editor's Pick!
Wilkinson, T. A., Cottrill, D. J., Cramlet, J. M., Maurer, C. E., Flood, C. J., Bracker, A. S., Yakes, M., Gammon, D., Flagg, E. B.
Applied Physics Letters 114, 133104 (2019).
doi: 10.1063/1.5084244
arXiv:181202151 [quant-ph]





Resonance fluorescence spectra
10. Effects of Resonant-Laser Excitation on the Emission Properties in a Single Quantum Dot
Gazzano, O., Huber, T., Loo, V., Polyakov, S., Flagg, E. B., and Solomon, G. S.
Optica 5354–359 (2018).
doi:10.1364/OPTICA.5.000354




11. Resonance Fluorescence of an InGaAs Quantum Dot in a Planar Cavity Using Orthogonal Excitation and Detection
Chen, D., Lander, G. R., and Flagg, E. B.Journal of Visualized Experiments no. 128 (2017): e56435–e56435.
doi:10.3791/56435


Excitation spectra with polarization-dependent interference

12. Polarization-Dependent Interference of Coherent Scattering from Orthogonal Dipole Moments of a Resonantly Excited Quantum Dot. 
Chen, D., Lander, G. R., Solomon, G. S. & Flagg, E. B. 
Phys. Rev. Lett. 118, 37401 (2017). 
doi:10.1103/PhysRevLett.118.037401



Resonant Photoluminescence Excitation Spectra


13. Characterization of the local charge environment of a single quantum dot via resonance fluorescence.
Chen, D., Lander, G. R., Krowpman, K. S., Solomon, G. S. & Flagg, E. B. 
Phys. Rev. B 93, 115307 (2016). 
doi:10.1103/PhysRevB.93.115307





Pseudo-Faraday configuration


14. Optical spin readout method in a quantum dot using the ac Stark effect. 
Flagg, E. B. & Solomon, G. S. 
Phys. Rev. B 92, 245309 (2015). 
doi:10.1103/PhysRevB.92.245309